这位诺奖得主曾坚守一条走不通的路

10月12日,第三届上海陆家嘴白领好声音歌唱大赛海选初赛,将在陆家嘴中心户外广场启航。大赛已启动招募,诚邀在陆家嘴工作的白领们在这个舞台用歌声诠释都市生活的多彩。陆家嘴汇聚了众多白领精英,在繁忙的工作之余,渴望在文化与艺术中释放压力,获得力量,满足对美好生活的向往。陆家嘴白领好声音歌唱大赛将为他们提供一...

◎ 科技日报记者 陆成宽

10月8日,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德和英裔加拿大科学家杰弗里·辛顿,以表彰他们通过人工神经网络实现机器学习而作出的基础性发现和发明。得知诺奖授予人工智能领域的研究者,上海交通大学人工智能学院教授张娅既震惊又激动。“震惊的是诺贝尔物理学奖竟然颁给了计算机科学家,激动的是人工智能领域获得了更广泛的认可。”张娅说。

两位获奖者都做了很多奠基性的工作

人工神经网络是一种模拟人脑神经元工作方式的机器学习模型,旨在通过模仿大脑的工作方式来处理复杂的计算问题。如今人工神经网络被广泛应用于医学、工程等各个领域,而且有望用于设计下一代计算机。“表面上看,2024年诺贝尔物理学奖授予了人工智能领域,但从更广泛的意义上讲,这个奖实际上授予了理论物理学。”中国科学院自动化研究所研究员、联合国人工智能高层顾问机构专家曾毅说,两位获奖者的研究背景都起源于物理学。今年获奖的两位科学家,在人工神经网络研究方面做了很多奠基性的工作。“杰弗里·辛顿提出了反向传播算法,让人工神经网络的训练成为了一种可能;约翰·霍普菲尔德提出了霍普菲尔德网络,这个网络对早期人工神经网络发展具有重要意义,20世纪80年代,许多物理学家都曾利用霍普菲尔德网络实现了由物理学到神经科学的跨越。”张娅说。“1986年,杰弗里·辛顿发表了反向传播算法的经典论文。虽然反向传播算法诞生于20世纪60年代,但杰弗里·辛顿的这篇论文让人们真正认识到它的重要性,掀起了神经网络研究领域的‘文艺复兴运动’。”商汤智能产业研究院院长田丰说,如今的生成式人工智能大模型、多模态大模型的训练都离不开反向传播算法。

这位诺奖得主曾坚守一条走不通的路

 

图片来源:视觉中国

“从人工智能的视角观察,可以说他们两位最核心的科学贡献,是将起源于理论物理、生物物理两个学科的理论成功应用于构建人工智能科学理论。学科交叉研究为人工智能开辟了新天地。”曾毅说。他表示,约翰·霍普菲尔德对记忆与关联学习的智能理论计算模型贡献很大,该模型在结构上是一个典型的循环神经网络,其结构类似于人脑中的海马体脑区;而杰弗里·辛顿对深度神经网络及其训练方法的贡献,主要在层次化与抽象化学习的智能理论计算模型方面,该模型在结构上是一个典型的层次化神经网络,相似的结构可以在人脑的大脑皮层连接模式中找到。

人工神经网络曾经是条走不通的路

被誉为“AI教父”的杰弗里·辛顿,是现代俗称的人工智能三巨头之一,目前国际上活跃的人工智能专家很多都是他的学生或同事,比如,openAI曾经的首席科学家伊利亚·苏茨克韦尔就是他的博士生。

“杰弗里·辛顿在1978年获得人工智能博士学位后,正赶上人工智能低谷期,那个时候人工智能领域的主流理论是符号主义和专家系统,人工神经网络这条路一度走不通。然而,杰弗里·辛顿并没有放弃,一直坚持在人工神经网络领域探索。”田丰说,直到2000年左右GPU兴起,杰弗里·辛顿才取得一些重大突破;此后,他带领学生一路披荆斩棘,在人工智能领域获得多个里程碑式的成果。

编辑:刘义阳

审核:张爽